102 research outputs found

    Correlating neural and symbolic representations of language

    Full text link
    Analysis methods which enable us to better understand the representations and functioning of neural models of language are increasingly needed as deep learning becomes the dominant approach in NLP. Here we present two methods based on Representational Similarity Analysis (RSA) and Tree Kernels (TK) which allow us to directly quantify how strongly the information encoded in neural activation patterns corresponds to information represented by symbolic structures such as syntax trees. We first validate our methods on the case of a simple synthetic language for arithmetic expressions with clearly defined syntax and semantics, and show that they exhibit the expected pattern of results. We then apply our methods to correlate neural representations of English sentences with their constituency parse trees.Comment: ACL 201

    Learning to Understand Child-directed and Adult-directed Speech

    Full text link
    Speech directed to children differs from adult-directed speech in linguistic aspects such as repetition, word choice, and sentence length, as well as in aspects of the speech signal itself, such as prosodic and phonemic variation. Human language acquisition research indicates that child-directed speech helps language learners. This study explores the effect of child-directed speech when learning to extract semantic information from speech directly. We compare the task performance of models trained on adult-directed speech (ADS) and child-directed speech (CDS). We find indications that CDS helps in the initial stages of learning, but eventually, models trained on ADS reach comparable task performance, and generalize better. The results suggest that this is at least partially due to linguistic rather than acoustic properties of the two registers, as we see the same pattern when looking at models trained on acoustically comparable synthetic speech.Comment: Authors found an error in preprocessing of transcriptions before they were fed to SBERT. After correction, the experiments were rerun. The updated results can be found in this version. Importantly, - Most scores were affected to a small degree (performance was slightly worse). - The effect was consistent across conditions. Therefore, the general patterns remain the sam

    Learning language through pictures

    Full text link
    We propose Imaginet, a model of learning visually grounded representations of language from coupled textual and visual input. The model consists of two Gated Recurrent Unit networks with shared word embeddings, and uses a multi-task objective by receiving a textual description of a scene and trying to concurrently predict its visual representation and the next word in the sentence. Mimicking an important aspect of human language learning, it acquires meaning representations for individual words from descriptions of visual scenes. Moreover, it learns to effectively use sequential structure in semantic interpretation of multi-word phrases.Comment: To appear at ACL 201

    Analyzing and Interpreting Neural Networks for NLP: A Report on the First BlackboxNLP Workshop

    Full text link
    The EMNLP 2018 workshop BlackboxNLP was dedicated to resources and techniques specifically developed for analyzing and understanding the inner-workings and representations acquired by neural models of language. Approaches included: systematic manipulation of input to neural networks and investigating the impact on their performance, testing whether interpretable knowledge can be decoded from intermediate representations acquired by neural networks, proposing modifications to neural network architectures to make their knowledge state or generated output more explainable, and examining the performance of networks on simplified or formal languages. Here we review a number of representative studies in each category

    Analyzing analytical methods: The case of phonology in neural models of spoken language

    Full text link
    Given the fast development of analysis techniques for NLP and speech processing systems, few systematic studies have been conducted to compare the strengths and weaknesses of each method. As a step in this direction we study the case of representations of phonology in neural network models of spoken language. We use two commonly applied analytical techniques, diagnostic classifiers and representational similarity analysis, to quantify to what extent neural activation patterns encode phonemes and phoneme sequences. We manipulate two factors that can affect the outcome of analysis. First, we investigate the role of learning by comparing neural activations extracted from trained versus randomly-initialized models. Second, we examine the temporal scope of the activations by probing both local activations corresponding to a few milliseconds of the speech signal, and global activations pooled over the whole utterance. We conclude that reporting analysis results with randomly initialized models is crucial, and that global-scope methods tend to yield more consistent results and we recommend their use as a complement to local-scope diagnostic methods.Comment: ACL 202

    Encoding of phonology in a recurrent neural model of grounded speech

    Full text link
    We study the representation and encoding of phonemes in a recurrent neural network model of grounded speech. We use a model which processes images and their spoken descriptions, and projects the visual and auditory representations into the same semantic space. We perform a number of analyses on how information about individual phonemes is encoded in the MFCC features extracted from the speech signal, and the activations of the layers of the model. Via experiments with phoneme decoding and phoneme discrimination we show that phoneme representations are most salient in the lower layers of the model, where low-level signals are processed at a fine-grained level, although a large amount of phonological information is retain at the top recurrent layer. We further find out that the attention mechanism following the top recurrent layer significantly attenuates encoding of phonology and makes the utterance embeddings much more invariant to synonymy. Moreover, a hierarchical clustering of phoneme representations learned by the network shows an organizational structure of phonemes similar to those proposed in linguistics.Comment: Accepted at CoNLL 201

    Revisiting the Hierarchical Multiscale LSTM

    Full text link
    Hierarchical Multiscale LSTM (Chung et al., 2016a) is a state-of-the-art language model that learns interpretable structure from character-level input. Such models can provide fertile ground for (cognitive) computational linguistics studies. However, the high complexity of the architecture, training procedure and implementations might hinder its applicability. We provide a detailed reproduction and ablation study of the architecture, shedding light on some of the potential caveats of re-purposing complex deep-learning architectures. We further show that simplifying certain aspects of the architecture can in fact improve its performance. We also investigate the linguistic units (segments) learned by various levels of the model, and argue that their quality does not correlate with the overall performance of the model on language modeling.Comment: To appear in COLING 2018 (reproduction track

    Quantifying cross-linguistic influence with a computational model: A study of case-marking comprehension

    Get PDF
    Cross-linguistic influence (CLI) is one of the key phenomena in bilingual and second language learning. We propose a method for quantifying CLI in the use of linguistic constructions with the help of a computational model, which acquires constructions in two languages from bilingual input. We focus on the acquisition of case-marking cues in Russian and German and simulate two experiments that employ a picture-choice task tapping into the mechanisms of sentence interpretation. Our model yields behavioral patterns similar to human, and these patterns can be explained by the amount of CLI: the negative CLI in high amounts leads to the misinterpretation of participant roles in Russian and German object-verb-subject sentences. Finally, we make two novel predictions about the acquisition of case-marking cues in Russian and German. Most importantly, our simulations suggest that the high degree of positive CLI may facilitate the interpretation of object-verb-subject sentences

    Learning language through pictures

    Get PDF
    corecore